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J .  Phys.: Condens. Matter l(1989) 2923-2934. Printed in the UK 

Electrical resistivity and thermopower of the liquid alloy 
MgZn 

M Walhoutt, L HaarsmaJ: and J B Van Zytveld 
Physics Department, Calvin College, Grand Rapids, Michigan 49506, USA 

Received 15 November 1988 

Abstract. We have measured the electrical resistivity, p ,  and the thermopower, S, for the 
liquid alloy MgZn across the entire concentration range. New data for p and S for pure liquid 
Zn are also reported. Data for the liquid alloy are shown to be consistent with the Faber- 
Ziman theory, provided the pseudopotential for Zn is assumed to be energy dependent. A 
comparison of the data for the liquid alloy with data previously reported for the solid 
amorphous alloy indicate that this energy dependence should also be considered in the solid. 

1. Introduction 

The last decade has seen considerable activity in the study of the electronic properties 
of both liquid binary alloy systems and amorphous solid metallic alloys. That studies of 
these systems should have followed similar paths is no surprise, since it is common to 
consider an amorphous metallic alloy to be similar to a random highly-viscous liquid. 
As a result, in many cases, the electronic properties of the amorphous alloys have been 
analysed using modifications of theories developed earlier for liquid metal systems. One 
of the most common theoretical formulations used to study either liquid alloys or solid 
amorphous alloys is that due to Faber and Ziman (1965). This formulation has been 
especially successful in describing the properties of weak-scattering liquid alloys. 

Most amorphous binary solid alloys fall naturally into two classes: those alloys in 
which one component is a transition metal and the other is a simple metal; and those in 
which both components are simple metals. Many alloys in the former class have been 
studied, but, because of the presence of the transition metal component, the weak- 
scattering theory of Faber and Ziman is not appropriate for their analysis. Instead, the 
‘extended Faber-Ziman theory’, developed by Evans and his co-workers (Evans et a1 
1971) for liquid transition metals and modified by others for amorphous alloys, has been 
applied (see Nagel 1978, Nagel et a1 1978, Meisel and Cote 1978, Cote and Meisel 1979). 
Unfortunately, in spite of its wide application to transition metal systems, the validity 
of this approach is still open to some question. (In this formulation, for example, a 
well defined Fermi surface is assumed.) Moreover, in applications of this method to 
amorphous solid alloys, an averaged scattering potential and an averaged structure 
factor are often assumed, making the application just a bit more tenuous (see Cote and 
Meisel 1977). It would seem that solid amorphous alloys of the second class should 
provide a more direct test of the application of Faber-Ziman-type theories. 
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Sevpral amorphous binary solid alloys of the second class have been discovered 
recently. These include, among others. MgCu (Matsuda and Mizutani 1982b), AgCu 
(Mizutani and Yoshida 1982), and MgZn (Matsuda and Mizutani 1982a; Baibich et a1 
1982; and others). Of these, MgZn appears to form the most nearly ideal alloy and has 
been studied most extensively. Mizutani and Mizoguchi (1981) have measured the 
electronic specific heat of this solid and found it to be within 2% of its free-electron value; 
Mizoguchi et a1 (1980) found the Fermi wavevector, measured by positron annihilation 
techniques, to be within 3% of its free-electron value; and Baibich et a1 (1982) found 
that magnetic susceptibility measurements also confirm the free-electron nature of this 
solid amorphous alloy. Similarly, it is expected that liquid MgZn should be a well 
behaved nearly free-electron alloy. As a result, with no d contribution to the electronic 
properties, one expects that the Faber-Ziman theory in its weak-scattering form should 
be applicable to both the solid and the liquid systems. Baibich et a1 (1982) and Matsuda 
and Mizutani (1982a) have in fact measured the electrical resistivity, p ,  and the ther- 
mopower, S, of the amorphous solid alloy, a-MgZn, over the range of composition from 
about 20 to 35 at % Zn.  Baibich and co-workers have analysed their results along the 
lines of the Faber-Ziman theory, finding that an approach akin to the full, non-averaged, 
theory may be needed. (They did, however, assume in their analysis that the energy 
dependence of the pseudopotentials for Mg and Zn could be ignored.) Matsuda and 
Mizutani (1982a) also employ the extended Ziman theory in their analysis of S.  

-We find that liquid MgZn should be an interesting alloy to study for several reasons. 
A study of the electronic properties of the liquid should shed light on the analysis of 
the results for the amorphous solid, since the full liquid alloy theory can be applied 
straightforwardly, employing the pseudopotentials of both alloy components as well 
as the measured or calculated (utilising the successful hard-sphere approximation) 
structure factors. Even though this alloy is divalent at all compositions, it is non- 
substitutional both structurally and electronically, forcing us to include in the analysis 
variations in Fermi energy with composition, as well as estimates of the three partial 
structure factors. It is also advantageous that the liquid alloy is expected to be homo- 
geneous over the entire range of composition, making a much broader composition 
range available to us. In what follows, we report measurements of p and S for the liquid 
alloy MgZn, and compare our results with those calculated on the Faber-Ziman theory 
and with the results reported for the amorphous solid. We also consider the energy- 
dependence of the pseudopotentials in our analysis. 

2. Theory 

It is possible to cast the electrical resistivity, p ,  of a liquid binary alloy as (Faber and 
Ziman 1965): 

where Q is the atomic volume, and uF is the Fermi velocity. Here, too, 

where kF is the Fermi wavevector and Kis the wavevector corresponding to momentum 
transfer. F ( K )  for a binary alloy can be written as (Ashcroft and Langreth 1967b) 
F ( K )  = cIU2(K)l2A22(K) + (1 - ~>l~l (K)12A11(K)  

+ - c>I1’*U1(K)~*(K)A**(K) ( 3 )  
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where U,(K)  is the pseudopotential of the ith component, c is the atomic fraction of 
component ‘2’ ,  and A , ( K )  is the partial structure factor as defined by Ashcroft and 
Langreth (1967a). This formulation should be appropriate for weak-scattering liquid 
alloys, and, with some modification, for weak-scattering amorphous solid alloys. The 
extended Ziman theory takes a similar form, but with the T-matrix replacing the pseu- 
dopotential in F( K ) .  

The partial structure factors, A,(  K ) ,  are available from neutron-scattering measure- 
ments (isotope enrichment techniques are used), or can be calculated on the basis of the 
hard-sphere approximation (Ashcroft and Langreth 1967a). In this calculation, one 
must choose a hard-sphere diameter, 02, and a ratio of hard-sphere diameters, a = ol/ 
o2 for the two species. (The species ‘1’ and ‘2’ are chosen so that a is always 61. The 
alloy packing fraction, 7, must also be chosen. (For pure liquid metals, 7 = 0.456 just 
above the melting temperature (Ashcroft and Lekner 1966) .) 

The pseudopotentials, U,(K) ,  can be obtained from any of several model potentials 
presently available. In this work we will use the empty core model potential of Ashcroft 
(1968) as applied successfully to binary alloys (cf Tomlinson 1969): 

Here (in atomic units) 

x = K/2kF 2 = czz + (1 - C)Z,  

and@) is the Lindhard dielectric function. (The model potential is in units of 2EF/3 . )  
R&,, is the single adjustable parameter for the ith species, and can be obtained from 
fitting the calculated value of p to the measured value for each pure liquid metal at the 
melting point. In this calculation equations (1)-(3) are used, with c = 0 , l .  A knowledge 
of U j ( K )  and Ai j (K)  then permits a calculation of p(c) via equations (1)-(3). 

The thermopower, S, of a binary liquid alloy can also be written in terms of F ( K )  (cf 
Van Zytveld 1975): 

-st2kg T 
S =  X 

31elEF 
( 5 )  

If we may neglect the energy dependence of the pseudopotentials, the term ‘r’in equation 
(6) will be zero. Then, utilising equation ( l ) ,  we can write, for the binary alloy: 
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The advantage of this approach is that we do not have to specify U,(K) in order to 
calculate x ( c )  from a knowledge of p(c). We can apply the Faber-Ziman formalism 
independent of a choice of pseudopotential. In particular, at any concentration, c, we 
can find uF, Q, and theAij(2kF). Measurements of p and S for thepure constituents then 
permit 'experimental' estimates of the Ui(2kF) via equations ( l ) ,  (3), (6), (7), making it 
possible to obtain F(2kF) for the alloy at any concentration (equation (3)). If we now 
have uF, Q, F(2kF) and p(c) for the alloy at concentration c, we can calculate x ( c )  via 
equation (9) and hence S(c), to compare with our measured values. 

3. Sample materials and experimental methods 

The pure metals used in forming the alloys in this study were obtained from two sources: 
Mg, of nominal purity 99.99%, was obtained from the Atomergic Chemetals Co., and 
Zn, purchased from Johnson-Matthey (Aesar) Co., was nominally 99.9999% pure. 

While measurements were being made, the liquid alloys were held in high-density 
high-purity A1203 tubes. Electrical contact to the samples was made via holes drilled 
through the sides of these tubes; electrical leads were then attached over thin MO foils 
(0.1 mm thick) which were drawn tightly over the holes to prevent leakage of the liquid. 
Prior to making measurements, each sample was stirred with a MO stirring wire to ensure 
the homogeneity of the alloy and to eliminate any bubbles that might have formed. 
Chromel-alumel thermocouples were used to measure the temperature at various points 
on the sample; pure Cu wire provided the counter electrode material for thermopower 
measurements. (We have used the results of Roberts (1981) for S(Cu).) The sample 
tubes were calibrated at room temperature with double-distilled Hg to provide the 
dimensional constant needed to extract the sample resistivity from the measured resist- 
ance, and the thermal expansion coefficient of Al,03 was utilised in extracting p(T) at 
higher temperatures. 

Resistivity measurements were made via a standard four-probe DC technique. Ther- 
mopower measurements were made by holding one junction at constant temperature 
and by obtaining the thermal voltage of the Cu-sample-Cu couple as a function of the 
temperature of the warmer junction. 

4. Experimental results 

The measured resistivity, p(c), of liquid MgZn is shown in figure 1 as a function of the 
atomic fraction, c,  of Zn. All data displayed are for the 700 "C isotherm. The results for 
p(c) fall on a smooth, nearly parabolic curve, and show no evidence of the double- 
peaked feature reported by Steeb et a1 (1970). The estimated uncertainties in the 
measured values of p are smaller than the points displayed in the figure, and therefore 
are not explicitly shown. We have also measured p for pure liquid Zn in the temperature 
range spanning 700 "C; our result, 35.5 ,us2 cm at 700 "C, agrees well with the value 
of 35.65 ,us2 cm given in the Lyon (1952), but falls substantially below the value of 
36.4 $2 cm given by Roll and Motz (1957). (Roll and Motz used a contactless rotating 
magnetic field measurement technique, as did Steeb et a1 (1970). The latter estimate the 
uncertainty in their measurements of p to be *6% .) 

Measured values of dp/dT (c) are also shown in figure 1. Over much of the con- 
centration range (c > 0.3), dp/d T< 0, consistent with Faber-Ziman theory for 2 = 2. 
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Figure 1. Electrical resistivity, p,  and dp/d T for the liquid alloy MgZn as a function c,  the 
atomic fraction of Zn. Data displayed are on the 700 "C isotherm. (0), present results; (A),  
Van Zytveld et a1 (1972); (U) Lyon (1952); (V) Hafner et a1 (1980), quoting Oberle et al ;  
(0), RollandMotz(1957); -----Steebeta1(1970); (-.-.-.-)pforliquidMgCddisplayed 
for comparison (see text), measured by Enderby et a1 (1968), but not previously published. 

Our results here agree reasonable well with those of Steeb et a1 (1970), as can also be 
seen in the figure. The value we have used for dp/d T for pure Mg is from the data of 
Van Zytveld et a1 (1972), but the data have been reanalysed with a resulting reduction 
in the estimated uncertainty. This new estimate of uncertainty is also displayed in the 
figure. 

Measured thermopowers, S(c), of the liquid MgZn alloys, also on the 700 "C iso- 
therm, are shown in figure 2. S(c) is seen to be weakly parabolic. We have also measured 
S for pure liquid Zn from 650 to 725 "C, and find S (pV "C-') = 1.70 + 3.2 x 
( T  - 700 "C); this value compares well with that reported by Marwaha and Cusack 
(1965) over the temperature range 420 "C S T s 725 "C: S (pV "C-') = 
1.63 + 4.3 x ( T  - 700 "C). (Here we have adjusted Marwaha and Cusack's results 
to Roberts' new values for S(Cu).) 

Because of the anticipated similarity between the liquid and amorphous alloy sys- 
tems, we compare our measurements of p(c) and S(c) for liquid MgZn with similar 
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Figure 2. Thermopower, S, for liquid MgZn as a function of c, the atomic fraction of Zn.  
The data are for the 700°C isotherm. (O), present results; (U), Van Zytveld et a/ (1973); 
( A ) ,  Marwaha and Cusack (1965). (Both of these have been adjusted to accommodate the 
new data of Roberts (1981) for S(Cu)); (-.-.-) calculated on Faber-Ziman theory (see 
text) ; (- - - - -) S(c) for liquid MgCd displayed for comparison (see text), Enderby eta/  (1968), 

measurements by Baibich et al(1982) and Matsuda and Mizutani (1982a) for the amorph- 
ous alloy. We show these in figure 3, where our results for the liquid are extrapolated to 
23 "C for comparison with the amorphous alloy at that temperature. For both p and S 
the comparison with Baibich et a1 (1982) is remarkably good. The data for S agree to 
well within the experimental uncertainty; the data for p are not quite so consistent: p 
for the amorphous alloys increases linearly for c > 0.2, whereas the data for the liquid 
curve downward and go through a maximum. The data for the liquid do not agree quite 
so well with the data of Matsuda and Mizutani (1982a). We do note, however, that 
Baibich and co-workers saw that the measured thermopower of one of their alloys was 
depressed by about 1 pV "C-' when that sample was partially crystallised. It is possible 
that some degree of crystallisation may also have occurred in the samples of Matsuda 
and Mizutani. In terms of magnitudes and concentration dependence, however, the 
general agreement between the liquid and amorphous solid data must be considered 
good, and provides experimental justification for the suggested similarity between these 
solid and liquid systems. 

5. Discussion 

We have calculated p(c) for the liquid alloy utilising equations (1)-(3) with a variety of 
methods. In 'method a', we have used the binary liquid alloy hard-sphere approximation 
(Ashcroft and Langreth 1967a) to calculate the Aij( K ) ,  assuming that the packing 
fraction q i  = 0.456 for each pure constituent, i, (at 700 "C), and q = 0.456 for the alloy 
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Figure3. p and S for MgZn as a liquid alloy and as an amorphous solid alloy. both as functions 
of the atomic fraction, c, of Zn.  (0, A), data for a-MgZn at 23 "C from Baibich et a1 (1982); 
(B), data for a-MgZn at 23 "C from Matsuda and Mizutani (1982a); (0). present data for 
the liquid, extrapolated to 23 "C. 

also. This should be a good assumption for both Mg and Zn, since the isotherm in 
question (700 "C) is close to the melting temperature for Mg ( Tmp = 650 "C), and A ( K )  
(and hence, 7) for Zn is seen to be nearly independent of temperature in neutron 
diffraction experiments (Wingfield and Enderby 1968). We have also used the Ashcroft 
empty-core model potential, U ( K ) ,  for each constituent (equation (4)). p ,  as calculated 
via equations (1)-(4) forpure liquid metals, is often found to be a double-valued function 
of R;,,,; hence there are often two values of RL,,, that will make the calculated p fit the 
measured value for a pure liquid metal. We find this to be true for both Mg and Zn.  In 
this way we find, for pure liquid Mg, that R,,,, (Mg) = 0.6006 A or 0.7305 A; for pure 
liquid Zn, we obtain Rcore(Zn) = 0.4660 or 0.6682 A. Using all combinations of these 
Rio,, , and taking cy = a(Zn)/a(Mg) as the only adjustable parameter, we find a very 
good fit of the calculated p(c) to the measured curve for cy = 0.731, with Rcore(Zn) = 
0.4660 A and R,,,,(Mg) = 0.6006 A (see table 1, method 'a'). (All other combinations 
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Table 1. Parameters used in calculating p(c) for liquid MgZn. 

1.58 
6.92 

1.58 
6.92 

1.58 
6.92 

1 .58 
6.92 

0.6006 
0.466 

0.6006 
0.686 

0.7305 
- 

0.6006 
- 

- 0.731 - 
- - 

- 0.055 - 
- - 

- - 0.682 
2.89 0.08 

- 0.804 - 
2.89 0.08 

+ See the text. 

20 I’t 
Mg 0.2 0 . 4  0.6 0.8 Zn 

C 

Figure 4. Calculated and experimental values of p(c )  for liquid MgZn. (-), experimental 
p(c) ;  calculated p(c) via: ( - - - - - ) ,  method ‘a’; (----), method ‘c’; (---), method ‘d’. 
(See table 1, and the text.) 

of values of R’,,,, result in clearly inferior fits for all values of CY.) This calculated p(c) is 
shown in figure 4. The value a = 0.731 is quite reasonable, being moderately close to 
the value of 0.85 that one obtains from calculating the oi for each constituent separately, 
via a knowledge of the atomic density and packing fraction of each pure liquid. These 
values of R‘,,,,, however, are smaller than those used in other studies: Ashcroft and 
Langreth (1967b) used a value of Rcore(Zn) (=0.673 A), essentially the same as our 
larger value, in calculatingp(c) for liquid HgZn. (q for Hg may have been unrealistically 
low, however, in this study.) Van Zytveld (1975) used R,,,,(Mg) = 0.744 A in his study 
of the liquid alloy LiMg; this is also virtually the same as our larger value for Mg. In both 
cases, the smaller values of Rio,, result in U,( K )  that do not have any zeros for K < 2kF. 
This may be reasonable for Zn, but is not likely to be a good description of U ( K )  for Mg 
(see, for example, Animalu and Heine (1965)). 

We also note that in this calculation we have used A & K )  calculated on the hard- 
sphere approximation. The hard-sphere structure factor, AHs( K ) ,  for pure liquid Mg 
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Figure 5. Structure factors, A ( K ) ,  for the pure liquids Mg and Zn just above their respective 
meltingtemperatures. ( - - -  --), A ( K )  calculated onthe hard-sphere approximation, Ashcroft 
andLekner (1966); (-) (for Mg) Woernereta1(1965), measuredby x-ray diffraction: - 
(for Zn) North et a1 (1968), measured by neutron diffraction; (-.- .- .- .-  ) Egelstaff et a1 
(1966), measured by neutron diffraction; arrow-peak position for Zn, Gamertsfelder (1941), 
measured by x-ray diffraction. 

follows that measured by x-ray diffraction methods very well for K < 2kF, but the 
agreement is not nearly so good for liquid Zn (see figure 5) .  In particular, the first peak 
in the measured A ( K )  for Zn is displaced slightly to larger values of K ,  but more 
noticeable is the fact that the height of this peak for the measured A ( K )  is well below 
that for A,,(K). The shape of the first peak in the measured A ( K )  for Zn is also non- 
ideal, rising more slowly on the low-K side and falling more rapidly for high K. It is 
reasonable to expect that, if we were to use an experimental A ( K )  for liquid Zn, we 
would improve our calculated p(c), bringing it even closer to the measured curve. 

To test this, we have therefore also taken the measured A ( K )  for pure liquid Zn 
(North et a1 1968) renormalised for use with the Ashcroft formalism for F ( K )  for the 
alloy (equation (3)), together with the calculated hard-sphere A ( K )  for Mg and for the 
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cross-term,A,(K) withi Z j ,  andfromthishavecalculatedp(c). TheR,,,,(Zn) = 0.686 A 
which reproduces p(Zn) is quite reasonable, but the value of a = 0.055 needed to obtain 
the experimental value of p(c = 0.5) appears to be non-physical. (These parameters are 
shown in table 1 under method ‘b’.) Thus the use of an experimental A(K) for Zn does 
not appear to result in an improvement in the calculated p(c). 

We also note that Meisel and Cote (1983) have been fairly successful in studying a- 
MgZn using a standard model potential for Mg and a phase-shift expansion of U( K )  for 
Zn, calculated along the lines of the T-matrix method of Evans (see Evans et a1 1971). 
Cast in this form 

where EF is the Fermi energy, 6, is the phase shift associated with the lth partial wave, 
and P,(cos e )  is the Ith Legendre polynomial. Meisel and Cote assume that for Zn only 
the s- and p-phase shifts are non-zero, and that the Friedel sum rule holds. In this way 
Gocan beobtained as theonly adjustable parameter in fitting themeasured andcalculated 
values of p for pure liquid Zn. We find 6o = 2.89 and 61 = 0.08, close to the values of 
2.87 and 0.09 reported by Meisel and Cote. (Here we have again calculated A,(K) via 
the method of Ashcroft and Langreth (1967a) for all three partial structure factors). We 
find fairly good agreement for p(c) with reasonable values of a for both values of 
R,,,,(Mg) (see table 1, methods ‘c’ and ‘d’, and figure 4). These calculated curves, p(c) 
are slightly inferior to that obtained by method ‘a’. It appears that a phase-shift expansion 
for U,,(K) is reasonable. 

We have also calculated p(c) using an Ashcroft model potential for Mg, the phase 
shift expansion of U( K )  for Zn, an experimentalA(K) for Zn,  and a hard-sphereA( K )  
for both Mg and for the cross term: A,(K), i # j .  p(c) calculated on this method differs 
substantially from the measured curve, and we do not display the result. It appears that 
we can calculate p(c) rather well with any of several methods, all within the basic Faber- 
Ziman formalism; we are somewhat surprised, however, that use of an experimental 
A(K) is not more successful. It is not clear why this is the case. 

It is possible, however, to minimise some of the difficulties associated with these 
calculations of p(c) (i.e., obtaining a realistic model-potential and obtaining a good 
estimate of the three A,(K)) by looking instead at an analysis of S(c). In particular, if 
we can ignore the energy dependence of the model-potential (as was also done by 
Baibich et a1 (1982)), we can write a single relation which couples x(c), p ( c )  and the 
parameters U,( K )  and AI,( K ) ,  but with these last two evaluated only at 2kF for the alloy 
(see equation (9), and the discussion following). We assume in applying this procedure, 
that the U,(2kF) so obtained are independent of c between the limits of 2k,(Mg) and 
2kF(Zn). This should be a reasonably good assumption. Moreover, because the A,, in 
the function F(2k,) must now only be evaluated at 2kF, we can use A,,(K) and rather 
readily estimate the errors that might be introduced by this approximation. Using the 
experimental p(c) and the hard-sphere A,(K),  and proceeding as outlined to obtain 
F(2kF), we find the x(c )  and hence the S(c) as shown in figure 2. It is clear that this curve 
compares poorly with the measured S(c). Moreover, attempts to incorporate measured 
values of A,(2kF) into an estimate of S(c) do not improve the agreement with the 
measured thermopowers. 

We are reminded, however, of the considerable similarity between p(c) and S(c) 
measured for liquid MgZn and these same parameters reported earlier for liquid MgCd 
(see figures 1 and 2). The liquid alloy MgCd is simpler, in that it is a substitutional alloy: 



p and S for liquid MgZn 2933 

both kF and the mean atomic volume, Q, are nearly independent of c. This is not the 
case fo MgZn, in which kF and S2 vary by about 16% and 48% respectively. In spite of 
this, the similarity in p(c) and S(c) is striking. We are further reminded that the analysis 
of the results for liquid MgCd implied strongly that the energy dependence of the model- 
potentials could not be ignored. (Enderby et aZ1968). We are led to propose that the 
energy dependence of U ( K ) ,  at least for Zn, must be included here as well (see also 
Wingfield and Enderby (1968)). 

Looking initially at pure liquid Zn, we see that S is measured to be about 1.7 pV "C-' 
(see figure 1). This implies via equation ( 5 )  that x is about -0.66. Using any of several 
model pseudopotentials, we find that q should fall into the range of 0.1 to 1.1, implying 
that r should be in the range of 2.9 to 6.9. This value of r is considerably larger than q ,  
and clearly should not be ignored in a study of pure liquid Zn. We also anticipate that 
this energy dependence of U ( K )  for Zn must also be considered in an analysis of S(c) 
for the MgZn alloy. 

In order to make progress in estimating the effect of this for the alloy, we assume 
that we can ignore the energy dependence of U ( K )  for Mg but not for Zn, and we further 
assume that U ( K ,  k )  (Zn) is linear in k.  We can then formally evaluate r ( c ) ,  equation 
(8), using F ( K ,  c), equation (3). Proceeding in this way we find that r(c)  for the alloy 
varies from 0 to about 4, with a mean value of about 2.5. We also estimate q(c)  to have 
a mean value of about 1. We see, therefore, that r for the alloy is, if anything, a bit larger 
than q ,  and also that r and q are of about the magnitude needed to explain the measured 

We conclude, therefore that Faber-Ziman theory can be applied meaningfully to 
liquid MgZn, and, we propose, to a-MgZn as well. Unfortunately, it appears that the 
energy dependence of the pseudopotentials cannot be ignored in the calculation of S(c) 
for the liquid alloy; it is anticipated that ignoring the r term in the analysis of S(c) for the 
amorphous solid is also unwise, and the analysis of Baibich et a1 (1982) should be altered 
to reflect this. This also weakens the argument made by Baibich and co-workers against 
the averaging approximations often made in analysing p and S for amorphous alloys. 

S(c). 
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